Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes.
نویسندگان
چکیده
Silicon (Si) is a promising material for lithium ion battery (LIB) anodes due to its high specific capacity. To overcome its shortcomings such as insulation property and large volume change during the charge-discharge process, a novel hybrid system, Si nanoparticles encapsulated in hollow graphitized carbon nanofibers, is studied. First, electrospun polyacrylonitrile (PAN)-Si hybrid nanofibers were obtained using water as the collector. The loose nanofiber lumps suspended in water have large inter-fiber distance, allowing in situ coating of a thin layer of polydopamine (PDA), the source for graphitized carbon, uniformly throughout the system. The designed morphology and structure were then realized by etching and calcination, and the morphology and structure were subsequently verified by various analytical techniques. Electrochemical measurements show that the resulting hollow hybrid nanofibers (C-PDA-Si NFs) exhibit much better cycling stability and rate capacity than conventional C/Si nanofibers derived by electrospinning of PAN-Si followed by calcination. For instance, the capacity of C-PDA-Si NFs is as high as 72.6% of the theoretical capacity after 50 cycles, and a high capacity of 500 mA h g(-1) can be delivered at a current density of 5 A g(-1). The significantly improved electrochemical properties of C-PDA-Si NFs are due to the excellent electrical conductivity of the carbonized PDA (C-PDA) shell that compensates for the insulation property of Si, the high electrochemical activity of C-PDA, which has a layered structure and is N-doped, the hollow nature of the nanofibers and small size of Si nanoparticles that ensure smooth insertion-extraction of lithium ions and more complete alloying with them, as well as the buffering effect of the remaining PAN-derived carbon around the Si nanoparticles, which stabilizes the structure.
منابع مشابه
Si nanoparticles encapsulated in elastic hollow carbon fibres for Li-ion battery anodes with high structural stability.
Silicon has a large specific capacity which is an order of magnitude beyond that of conventional graphite, making it a promising anode material for lithium ion batteries. However, the large volume changes (∼ 300%) during cycling caused material pulverization and instability of the solid-electrolyte interphase resulting in poor cyclability which prevented its commercial application. Here, we hav...
متن کاملSilicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries.
Silicon core-hollow carbon shell nanocomposites with controllable voids between silicon nanoparticles and hollow carbon shell were easily synthesized by a two-step coating method and exhibited different charge-discharge cyclability as anodes for lithium-ion batteries. The best capacity retention can be achieved with a void/Si volume ratio of approx. 3 due to its appropriate volume change tolera...
متن کاملA pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes.
Silicon is an attractive material for anodes in energy storage devices, because it has ten times the theoretical capacity of its state-of-the-art carbonaceous counterpart. Silicon anodes can be used both in traditional lithium-ion batteries and in more recent Li-O2 and Li-S batteries as a replacement for the dendrite-forming lithium metal anodes. The main challenges associated with silicon anod...
متن کاملLow-cost carbon-silicon nanocomposite anodes for lithium ion batteries
The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong ca...
متن کاملGermanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries.
Germanium is a promising high-capacity anode material for lithium ion batteries, but still suffers from poor cyclability due to its huge volume variation during the Li-Ge alloy/dealloy process. Here we rationally designed a flexible and self-supported electrode consisting of Ge nanoparticles encapsulated in carbon nanofibers (Ge-CNFs) by using a facile electrospinning technique as potential ano...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 5 7 شماره
صفحات -
تاریخ انتشار 2013